Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Mol Bioeng ; 14(3): 259-265, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34109004

RESUMO

INTRODUCTION: The use of 3D-bioprinted ovaries has been proven to be a promising technique for preserving fertility. Stereology is an accurate method to obtain quantitative 3D information and the stereological data is the basis for 3D bioprinting ovaries. METHODS: In this study, six female mice were used to acquire the ovarian tissues. One of the two paraffin-embedded ovaries of each mouse was cut into 5 µm sections, and the other was cut into 15 µm sections and then subjected to haematoxylin and eosin staining and anti-follicle stimulating hormone receptor antibody immunohistochemistry. The volume and volume fractions of ovaries were measured by the Cavalieri method. Then, the numerical densities and total numbers of ovarian granulosa cells (OGCs) and primordial, preantral and antral follicles in serial sections were estimated using design-based stereology. RESULTS: The ovarian volume was 2.50 ± 0.32 mm3. The volume fractions of the cortex, medulla, follicles and OGCs were 86.80% ± 2.82, 13.20% ± 2.82%, 5.60% ± 0.25% and 81.19% ± 2.57%, respectively. The numerical densities of OGCs, the primordial, preantral and antral follicles were 2.11 (± 0.28) × 106/mm3, 719.57 ± 18.04/mm3, 71.84 ± 3.93/mm3 and 17.29 ± 3.54/mm3, respectively. The total number of OGCs and follicles per paraffin-embedded ovary were 5.26 (± 0.09) × 106 and 2013.66 ± 8.16. CONCLUSIONS: The study had obtained the stereological data of the mice ovaries, which contribute to a deeper understanding of the structure of the ovaries. Meanwhile, the data will supply information for 3D bioprinting ovaries.

2.
Stem Cell Res Ther ; 11(1): 280, 2020 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-32660551

RESUMO

BACKGROUND: Human umbilical cord mesenchymal stem cell (hUC-MSC) therapy is considered as a promising approach in the treatment of intrauterine adhesions (IUAs). Considerable researches have already detected hUC-MSCs by diverse methods. This paper aims at exploring the quantitative distribution of CM-Dil-labeled hUC-MSCs in different regions of the uterus tissue of the dual injury-induced IUAs in rats and the underlying mechanism of restoration of fertility after implantation of hUC-MSCs in the IUA model. METHODS: In this study, we investigated the quantification of the CM-Dil-labeled hUC-MSCs migrated to the dual injured uterus in Sprague Dawley rats. Additionally, we investigated the differentiation of CM-Dil-labeled hUC-MSCs. The differentiation potential of epithelial cells, vascular endothelial cells, and estrogen receptor (ER) cells were assessed by an immunofluorescence method using CK7, CD31, and ERα. The therapeutic impact of hUC-MSCs in the IUA model was assessed by hematoxylin and eosin, Masson, immunohistochemistry staining, and reproductive function test. Finally, the expression of TGF-ß1/Smad3 pathway in uterine tissues was determined by qRT-PCR and Western blotting. RESULTS: The CM-Dil-labeled cells in the stroma region were significantly higher than those in the superficial myometrium (SM) (71.67 ± 7.98 vs. 60.92 ± 3.96, p = 0.005), in the seroma (71.67 ± 7.98 vs. 23.67 ± 8.08, p = 0.000) and in the epithelium (71.67 ± 7.98 vs. 4.17 ± 1.19, p = 0.000). From the 2nd week of treatment, hUC-MSCs began to differentiate into epithelial cells, vascular endothelial cells, and ER cells. The therapeutic group treated with hUC-MSCs exhibited a significant decrease in fibrosis (TGF-ß1/Smad3) as well as a significant increase in vascularization (CD31) compared with the untreated rats. CONCLUSION: Our findings suggested that the distribution of the migrated hUC-MSCs in different regions of the uterine tissue was unequal. Most cells were in the stroma and less were in the epithelium of endometrium and gland. Injected hUC-MSCs had a capacity to differentiate into epithelial cells, vascular endothelial cells, and ER cells; increase blood supply; inhibit fibration; and then restore the fertility of the IUA model.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Animais , Carbocianinas , Diferenciação Celular , Células Cultivadas , Células Endoteliais , Feminino , Humanos , Ratos , Ratos Sprague-Dawley , Cordão Umbilical , Útero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...